Lesson 30-Extrema of Functions of 2 Variables - Part II Applications
Plan for today
(1) Do Pop Quiz 10
you can work in groups/ Use notes
(2) Work on the worksheet for Lesson 30
(3) Check answers at
https://www.math.purdue.edu/~jrrobbin/ma16020.html
Announcements
(1) No MA 16020 next week $M \| 20, W 川 22, F M / 24$
(2) No office hours next week. If you need to meet this
 email Dr. Robbins
(3) Pr. Robbins has contacted the course coordinator about Homework 30. It should be due on Wed $11 / 15$, not Mon $\|\|$

## Lesson 30 - Extrema of Functions of Two Variables II Applications

Last class, we learned the second partial derivatives test. We used this test to help us find local minima and local maxima of functions when possible. Today we will use this test to help us solve optimization problems.

## I Strategy for Optimization Problems

(1) Read the problem. Then read it again for details.
(2) Write your variables and what they mean.
(3) Write an objective function and whether you are trying to maximize it or minimize it.
(4) Write any constraint equations specified in the problem.
(5) If necessary, use the constraint equations to rewrite the objective function using only two variables.
(6) Use the Second Partial Derivative Test to find places where local minima or local maxima occur.
(7) Answer the question. Sometimes the question will be asking for places where there is an extremum. Sometimes they will want the extreme value. If they want the extreme value, you will need to plug your critical point into the objective function to answer the question.

II Examples
cost length and the girth (perimeter of a cross-section) of a package carried by a delivery service cannot exceed 108 in. Find the largest volume that can be sent. (NOTE: The length is the longest dimension of the box.)
objective fer
pertains to volume.

$\max V=l a b \quad V(l, a, b)=l a b$
$\begin{gathered}\text { subject to } \\ \text { (S.t.) }\end{gathered} l+\underbrace{2 a+2 b}_{\text {girth }} \leq 108$
For max vol

$$
l+2 a+2 b=108
$$

$$
\Rightarrow l=108-2 a-2 b
$$



Simplified

$$
\max V(a, b)=(108-2 a-2 b) a b=108 a b-2 a^{2} b-2 a b^{2}
$$

subject to $l=108-2 a-2 b$
Crit Pts.

$$
b(108-4 a-2 b)=0
$$

And $a(108-2 a-4 b)=0$
$b=0$ OR $108-4 a-2 b=0$

$$
d \neq 0 \text { OR } 108-2 a-4 b=0
$$

Crit Pts: I require both $V_{a}(a, b)=0$ and $V_{b}(a, b)=0$

$$
\left\{\begin{aligned}
4 a+2 b & =108 \\
2 a+4 b & =108
\end{aligned} \quad \begin{array}{rl}
4 a+2 b & =108 \\
-4 a-8 b & =-216 \\
-6 b & =-108 \\
b & =18
\end{array}\right.
$$

$$
\begin{aligned}
& V_{a}(a, b)=108 b-4 a b-2 b^{2}>108 b-4 a b-2 b^{2}=0 \\
& V_{b}(a, b)=108 a-2 a^{2}-4 a b \quad b(108-4 a-2 b)=0 \\
& 108 a-2 a^{2}-4 a b=0 \\
& a(108-2 a-4 b)=0
\end{aligned}
$$

$$
b=18 \rightarrow(1) \quad \begin{aligned}
4 a+2(18) & =108 \\
4 a+36 & =108 \\
4 a & =72 \\
a & =18
\end{aligned}
$$

Crit pt: $(a, b)=(18,18)$
Will this produce a max?

$$
\begin{aligned}
& \operatorname{Vaa}(a, b)=-4 b \\
& \operatorname{Vbb}(a, b)=-4 a \\
& \operatorname{Vab}(a, b)=108-4 a-4 b
\end{aligned}
$$

$$
\begin{aligned}
D(18,18) & =(-4(18))(-4(18))-(108-4(18)-4(18))^{2} \\
& =3888>0 \\
V_{a a}(18,18) & =-4(18)<0
\end{aligned}
$$

rel. max. $\quad v_{01}=v(18,18)=11,664 \mathrm{in}^{3}$

Example 2 (Based on LON-CAPA problem). A manufacturer is planning to sell a new product at the price of 300 dollars per unit and estimates that if $x$ thousand dollars is spent on development and $y$ thousand dollars is spent on promotion, consumers will buy approximately

$$
\frac{800 y}{y+5}+\frac{900 x}{x+10}
$$

units of the product.
If manufacturing costs for the product are 200 dollars per unit, how much should the manufacturer spend on development and how much on promotion to generate the largest possible profit?

Remember: Profit = All Revenues - All Expenses/Costs
Round your answer to the nearest dollar.

Example 3 (Based on LON-CAPA problem). A machine's productivity is based on the measurements of $x$ and $y$ in the room containing the machine. (Note that $x \geq 0$ and $y \geq 0$.) The machine's productivity is given by

$$
f(x, y)=x y e^{-\frac{x^{2}}{18}-\frac{y^{2}}{50}}
$$

(a) Find the critical points of $f$.
(b) If $f_{x x}(3,5)=-\frac{10}{9 e}, f_{y y}=-\frac{6}{5 e}$, and $f_{x y}(3,5)=0$, what can you conclude about the productivity of the machine when $x=3$ and $y=5$ ? Looking back at the original function, can you explain why $x=0$ and $y=0$ could not possibly be a useful solution if we want to maximize productivity?

